翻訳と辞書
Words near each other
・ Avahi
・ Avahi (software)
・ Avaholic
・ Avaiki
・ Avaikkottai
・ Avail
・ Availability
・ Availability (system)
・ Availability cascade
・ Availability factor
・ Availability heuristic
・ Availability, salience and vividness
・ Availability-based tariff
・ Available (disambiguation)
・ Available Bit Rate
Available energy (particle collision)
・ Available expression
・ Available for Propaganda
・ Available for sale
・ Available in All Colors
・ Available light
・ Available Light (album)
・ Available Light (EP)
・ Available name
・ Available revenue time
・ Available seat miles
・ Available space theory
・ Available water capacity
・ Available-to-promise
・ Availity


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Available energy (particle collision) : ウィキペディア英語版
Available energy (particle collision)

In particle physics, the available energy is the energy in a particle collision available to produce new matter from the kinetic energy of the colliding particles. Since the conservation of momentum must be held, a system of two particles with a net momentum may not convert all their kinetic energy into mass - and thus the available energy is always less than or equal to the kinetic energy of the colliding particles. The available energy for a system of one stationary particle and one moving particle is defined as:
: E_a = \sqrt
where
: E_t is the total energy of the target particle,
: E_k is the total energy of the moving particle,
: m_t is the mass of the stationary target particle,
: m_k is the mass of the moving particle, and
: c is the speed of light.
==Derivation==
This derivation will use the fact that:
: (mc^2)^2 = E^2-P^2c^2
From the principle of the conservation of linear momentum:
: P_a = P_k
Where P_a and P_k are the momentums of the created and the initially moving particle respectively.
From the conservation of energy:
: E_T= E_t+E_k
Where E_T is the total energy of the created particle.
We know that after the collision:
: (E_a)^2=(E_T)^2-(P_a)^2 c^2
: (E_a)^2=(E_t+E_k)^2-(P_k)^2 c^2
: (E_a)^2=(E_t)^2 +(E_k)^2 + 2 E_t E_k-(P_k)^2 c^2
Donating this last equation (1). But
: (m_k)^2 c^4=(E_k)^2-(P_k)^2 c^2
and since the stationary particle has no momentum
: (m_t)^2 c^4=(E_t)^2
Therefore from (1) we have
: (E_a)^2=(m_k)^2 c^4+(m_t)^2 c^4 + 2 E_t E_k
Square rooting both sides and we get
: E_a = \sqrt

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Available energy (particle collision)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.